3.3.2 \(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [202]

3.3.2.1 Optimal result
3.3.2.2 Mathematica [A] (verified)
3.3.2.3 Rubi [A] (verified)
3.3.2.4 Maple [B] (warning: unable to verify)
3.3.2.5 Fricas [A] (verification not implemented)
3.3.2.6 Sympy [F]
3.3.2.7 Maxima [F(-1)]
3.3.2.8 Giac [A] (verification not implemented)
3.3.2.9 Mupad [F(-1)]

3.3.2.1 Optimal result

Integrand size = 35, antiderivative size = 165 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {5 (A-15 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(3 A-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(A+9 C) \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}} \]

output
5/32*(A-15*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2) 
)/a^(5/2)/d*2^(1/2)-1/4*(A+C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^( 
5/2)-1/16*(3*A-13*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+1/4*(A+9*C)*tan 
(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)
 
3.3.2.2 Mathematica [A] (verified)

Time = 1.58 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.86 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\left (20 \sqrt {2} (A-15 C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+(A+113 C+10 (A+17 C) \cos (c+d x)+(A+49 C) \cos (2 (c+d x))) \sqrt {1-\sec (c+d x)}\right ) \sec ^2(c+d x) \tan (c+d x)}{32 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/ 
2),x]
 
output
((20*Sqrt[2]*(A - 15*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d 
*x)/2]^4 + (A + 113*C + 10*(A + 17*C)*Cos[c + d*x] + (A + 49*C)*Cos[2*(c + 
 d*x)])*Sqrt[1 - Sec[c + d*x]])*Sec[c + d*x]^2*Tan[c + d*x])/(32*d*Sqrt[1 
- Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))
 
3.3.2.3 Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4573, 27, 3042, 4496, 27, 3042, 4489, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle -\frac {\int -\frac {\sec ^2(c+d x) (4 a (A-C)+a (A+9 C) \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^2(c+d x) (4 a (A-C)+a (A+9 C) \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (4 a (A-C)+a (A+9 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4496

\(\displaystyle \frac {-\frac {\int -\frac {\sec (c+d x) \left (3 (3 A-13 C) a^2+4 (A+9 C) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left (3 (3 A-13 C) a^2+4 (A+9 C) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 (3 A-13 C) a^2+4 (A+9 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {5 a^2 (A-15 C) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx+\frac {8 a^2 (A+9 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {5 a^2 (A-15 C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 a^2 (A+9 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {\frac {8 a^2 (A+9 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {10 a^2 (A-15 C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {5 \sqrt {2} a^{3/2} (A-15 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {8 a^2 (A+9 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {a (3 A-13 C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

input
Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]
 
output
-1/4*((A + C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) 
+ (-1/2*(a*(3*A - 13*C)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^(3/2)) + ((5 
*Sqrt[2]*a^(3/2)*(A - 15*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a 
+ a*Sec[c + d*x]])])/d + (8*a^2*(A + 9*C)*Tan[c + d*x])/(d*Sqrt[a + a*Sec[ 
c + d*x]]))/(4*a^2))/(8*a^2)
 

3.3.2.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4496
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot 
[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(b^2*(2*m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b 
*B*(2*m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && Ne 
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
3.3.2.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(305\) vs. \(2(142)=284\).

Time = 0.79 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.85

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (-2 A \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}-2 C \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}-A \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-17 C \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+5 A \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-75 C \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+3 A \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+83 C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{32 a^{3} d}\) \(306\)
parts \(\frac {A \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-2 \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {3}{2}} \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-5 \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )\right )}{32 d \,a^{3}}-\frac {C \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}+17 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+75 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+83 \cot \left (d x +c \right )-83 \csc \left (d x +c \right )\right )}{32 d \,a^{3}}\) \(362\)

input
int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETUR 
NVERBOSE)
 
output
1/32/a^3/d*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-2*A*(1-cos(d*x 
+c))^5*csc(d*x+c)^5-2*C*(1-cos(d*x+c))^5*csc(d*x+c)^5-A*(1-cos(d*x+c))^3*c 
sc(d*x+c)^3-17*C*(1-cos(d*x+c))^3*csc(d*x+c)^3+5*A*ln(csc(d*x+c)-cot(d*x+c 
)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2- 
1)^(1/2)-75*C*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^( 
1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)+3*A*(-cot(d*x+c)+csc(d*x+c)) 
+83*C*(-cot(d*x+c)+csc(d*x+c)))
 
3.3.2.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 464, normalized size of antiderivative = 2.81 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {5 \, \sqrt {2} {\left ({\left (A - 15 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (A - 15 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (A - 15 \, C\right )} \cos \left (d x + c\right ) + A - 15 \, C\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (A + 49 \, C\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 17 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {5 \, \sqrt {2} {\left ({\left (A - 15 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (A - 15 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (A - 15 \, C\right )} \cos \left (d x + c\right ) + A - 15 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (A + 49 \, C\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 17 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algori 
thm="fricas")
 
output
[1/64*(5*sqrt(2)*((A - 15*C)*cos(d*x + c)^3 + 3*(A - 15*C)*cos(d*x + c)^2 
+ 3*(A - 15*C)*cos(d*x + c) + A - 15*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*co 
s(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1) 
) + 4*((A + 49*C)*cos(d*x + c)^2 + 5*(A + 17*C)*cos(d*x + c) + 32*C)*sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3 
*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(5*sqrt(2)*(( 
A - 15*C)*cos(d*x + c)^3 + 3*(A - 15*C)*cos(d*x + c)^2 + 3*(A - 15*C)*cos( 
d*x + c) + A - 15*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((A + 49*C)*cos(d*x + c 
)^2 + 5*(A + 17*C)*cos(d*x + c) + 32*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
+ c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3 
*d*cos(d*x + c) + a^3*d)]
 
3.3.2.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**( 
5/2), x)
 
3.3.2.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algori 
thm="maxima")
 
output
Timed out
 
3.3.2.8 Giac [A] (verification not implemented)

Time = 1.43 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.55 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left ({\left (\frac {2 \, {\left (\sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8}} + \frac {\sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 17 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {3 \, \sqrt {2} A a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 83 \, \sqrt {2} C a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} - \frac {5 \, {\left (\sqrt {2} A - 15 \, \sqrt {2} C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{32 \, d} \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algori 
thm="giac")
 
output
1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*((2*(sqrt(2)*A*a^6*sgn(cos(d*x + 
 c)) + sqrt(2)*C*a^6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2/a^8 + (sqrt 
(2)*A*a^6*sgn(cos(d*x + c)) + 17*sqrt(2)*C*a^6*sgn(cos(d*x + c)))/a^8)*tan 
(1/2*d*x + 1/2*c)^2 - (3*sqrt(2)*A*a^6*sgn(cos(d*x + c)) + 83*sqrt(2)*C*a^ 
6*sgn(cos(d*x + c)))/a^8)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - 
 a) - 5*(sqrt(2)*A - 15*sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) 
+ sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(cos(d*x + c))))/ 
d
 
3.3.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)), x)